NUMERICAL SOLUTION OF A HEAT-TRANSFER PROBLEM

N. G. Kondrashov, T. L. Perel'man, UDC 517.9:536.2
V. B. Ryvkin, and M. M. Baida

Using numerical calculations, a study is made of the relation between the mean temperature
of a surface and the heat flux, in cooling a solid with a stream of liquid.

The present paper describes results of a numerical investigation on the Minsk-2 computer of the
problem considered in [1]. A number of variants have beensolved with different values of 8, K;, K; and
a‘37=R/d = 0 for the case R =d, hg= d/10 [2]. Calculation of the asymptote at the point (0, 0) was accom-
plished by replacing a five-point scheme by variable coefficients Ai,j and Bi,j at the points shown in Table 2
[2], apart from the point (0, 0), where the scheme assumes a relation between the points (0, 0) and (0, 1).

In accordance with the technique of [3], the upper boundary with respect to g_was chosen to be 2.6, and
the boundary condition was taken as
‘ du >
_— afu
(o5

and hz = 0.2. In choosing the boundary in the ligquid, which is the boundary condition for large £, we must
take care that the mesh scheme does not become unstable because of the symmetric approximation to the
term (1 /S)EZ(BT(f)/ag) in the heat-transfer equation. The large value of dimensionless pitch hgin com-~
parison with hg is due to the smoother behavior of u = T with respect to £ in the region corresponding to
the liquid.

=0 (e =283) @

£=2,6

The method of calculation involves introduction of successive corrections, which are found by the
fractional pitch method [4, 5].

The original system of equations can be written as

Lu=jf (2

the symmetric part of the operator L being positive definite. The structure of the operator L, acting in
vector space, and with its components numbered by the two subscripts, is determined in accordance with
[2]. For application of the fractional pitch method the operator L is represented in the form

L=L+ Ly,
where L, is the operator given by the formulas:
(L)) =45 (4?)2 j=0,i=1,2 .., 10

and j=1, 2, ..., 10, i=0, 1, ..., 10; (3)
[LwP}; =0, j=0,i=0
and j=—1, —2, —3, ..., —13, i=0,1, ..., 10;
withi=0andi=10
;= uld,

and L,
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where, for j = —13, we must include in the formulas ul(f;_l, using Eq. (1) in the form (u( ))zg [j=—13 = @

Ui glj = —130 and for j =10 uf _])+1’ using the boundary condition at the lower boundary of the body [1}],
@Bl = o= q;d /A4, by relating the term —2q;d /Aghz in {Lu®)}; to f in Eq. (2), which gives f; ,, =
i 2y] j=1 i 8 i s 2 1,1 il

—2q;d/Aghg. The quantity—v—].?«v was determined in [2].

It is clear that the problem of calculating (E — 7Lj) " with a diagonal in the chosen representation
of the vectors by the positive operator 7 can be solved effectively by direct methods (for L, it is decom~
posed intc a number of problems with tridiagonal matrices, and for L, it reduces to the solution, using an
implicit scheme, of a degenerate parabolic equation, where X plays the role of the time coordinate).

Instead of the problem of (2) we shall solve the equivalent problem of
Mu=xclu=xf=g (22)

The choice of the operator T must further satisfy the requirements of rapid convergence of the method for
specific values of the parameters, and simple convergence for as wide a range as possible of values of the
parameters. An investigation and a justification of analogous transformations of the original equations
was made in [6] by Lebedev in the case of kinetic equations, and also in [7]. At least we should require.that
there should be no obstacles to application of internal pitch steps of the scheme. At the same time the cal-
culation pursued the objective of investigating the application of the scheme in the noncommutative case of
the scheme [8].

The scheme consists of seeking corrections to some approximation uy
U =ty + S uy,
th=Nu,—g ;=7L,i=12),
Uy = (E—Ta) " ()41 + 7)), (5)
U, =(E—TIy ™o,

he=0, 6u, = Ur, .

For a specific numerical process here we must assign sets {kl} and 17 (1 =k =ky).

In chooging T we should take account of the following considerations, based partially on investigation
of cases close to commutative. Small values of 77 ke of the order of the reciprocal of the main eigenvalue
of the operator II, take a good account of error components corresponding to large eigenvalues, even in the
case when they are used once. Larger values of 7 k take better account of error components corresponding
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to smaller eigenvalues of the operator II, but, besides the poor calculation of components with large eigen-
values, an additional, substantial error appears in these components in the noncommutative case. To avoid
this 7; ;. was chosento diminishwith k, roughly in geometric progression, and the smallest of these, for fixed
L, were of the order of the inverse of the spectral limits of the operator II. The diagonal operator 7= {Ti ,j}
was chosen from the following considerations. First, in performing an operation with respect to j, transi-
tion to an unstable condition must not occur, i.e., such that in the operator W = (E — 7L,), the matrix ele-
ments Wi 5.5 5 = !Wi REN +1| + iWi,j B ,j_il,Which,ofcourse,imgosesa restriction only when 8 > 0. For j

> 0 (inside the body) with 7 j we obtain a quantity of order 1/ 8, and for j = 0 the estimate takes the form

1 -
— g Kk (©)
i T

K 2K:D,

T[,h (Ls ]) =

o1

wl ol

In the liquid (j < 0) the original problem is parabolic, so that here there are no upward restrictions on

Ty j and we can even take Tij=t® (T =~ 10* was taken in the calculations) since, in cases when the corre-
sponding problem of transforming (E — 7L,) encounters a singularity, the results of the calculation are
inapplicable because the approximation mesh becomes unsuitable. On the other hand, we must not choose
Tij appreciably larger than unity when j > 0, since then the conditions imposed in transforming (E — 7L,)
deteriorate severely. Since we should first work on the convergence of the method, we must choose a
smaller value of the corresponding estimates. In addition, near (i = 0, j = 0), because of the rapid change
in the coefficients of the mesh equation, smaller values of ’;i j were chosen, and, in fact, a factor of the type
273+ (i +]) was added to Ti,j for 1 = 0,§ = 0 to bring it up to 1 (at the point i = 0, j = 0 no correction was
applied). Since the calculation used only the computational process described above, suitable for nonnega-
tive symmetric parts of the operators Ly and Ls, the only restriction is on 3, for which the restriction was
applied.

For a preliminary estimate of this characteristic value of B the following model problem inside the
body was used:

27(s) —

Y 1510 =0, 0<j<-X,
0y d
aj_‘(S) _ 3 7 ,
9y lm=o 3715K; =0
OT:S) = ad 70| &,
oy =7 Ay =7

The coefficient in the boundary condition y = 0 was determined using the solution of the corresponding model
in the liquid [1], with a constant temperature boundary. The value of the characteristic 8, denoted below
by B, was estimated by the moment method, in the case when the liquid heat capacity was neglected, to be:

_ 3
3 @l .= 7
b =135k W=r=0 (0

All the estimates in Eq. (6) were taken with B replaced by 8. The set k7] Jo was chosen from the considera-
tions described earlier and according to the following rule as the result of the fractional calculations. All
the k7 = 5.

Typ = LTyTy, (8)

where the sequence 77 is periodic with period (1; 0.6; 0.3), 1 is the set (1; 0.6; 0.3; 0.1; 0.03). The value

of £ was chosen empirically. It was found most favorable to take { = 2. In cases close to critical it was
necessary to reduce £. As an initial approximation everywhere the zero vector was used, although we should
have used solutions for adjacent values of the parameters. In Eq. (2) {f}i,j = 0, apart from {f}i,w = —2q;d
/Aghg , at the lower boundary of the body R/d.

In order to use the results we need to know the average temperature of the surface and the flux through
it,ie.,

d d
'oTh (s)
_1_. }hfﬁr___dx:_l.«j‘}hs ore dx =gq.
d dy d ; oy

0
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TABLE 1. Values of Mean Boundary Temperature, Dimensionless
Heat Flux, and Heat-Transfer Coefficient

K K, {#} Té(ﬂs,) Pay Pe @
5 5 —0,153 2,5390 0,5706 0,5583 0,2248
—0,0765 | 3,6134 0,7037 0,6934 0,1948
0 68,1969 1,0047 1 0,1621
+0,03825 | 9,592l 1,3876 1,3908 0,1447
+0,0765 | 21,0870 92,6635 2,6951 0,1263
1 —0,153 2,9159 0,5118 0,1755
—0,0765 | 3,9847 0,6729 0,1689
0 6,1969 1,0047 1 0,1621
+0,03825 | 8,5135 1,3512 0,1587
10,0765 | 13,4889 2,0942 0,1583
0,5 —0,765 0,8874 0,1727 0,1642 0,1947
—0,153 2,9755 0,5025 0,4947 0,1689
—0,0765 | 4,0387 0,6685 0.6616 0,1655
0 6,1969 1,0047 1 0,1621
40,03825 | 8,3978 1,3472 1,3446 0,1604
+0,0765 | 12,9314 2,0524 2,0548 0,1587
1 5 —0,636 0,3180 0,5963 0,5809 | 1,875
—0,318 0,5133 0,7263 0,7118 1,4150
—0,159 0,7260 0,8278 0,8158 1,1403
0 1,226 1,0044 1 0,8215
40,159 3,8085 1,6814 1,7250 0,4415
1 —0,636 0,4712 0,5089 0,5000 1,0802
—0,318 0,6980 0,6666 0,6586 0,9550
0 1,2226 1,0044 1 0,8215
+0,159 1,8590 1,3965 1,3974 0,7512
40,318 3,6237 9,4582 29,4755 | 0,6784
40,4452 | 12,6327 7,8091 7,9130 0,6182
0.5 —0,636 0,5099 0,4868 0,4795 0,9548
—0,318 0,7359 0,6543 0,6477 0,8892
0 1,2226 1,0044 1 0,8215
+0,159 1,7550 1,3814 1,3801 0,7868
+0,318 2,9808 2.2398 2,2462 0,7514
0 —6,36 0,0492 0,0401 0,8159
—3,18 0,1323 0,1082 0,8183
—0,636 0,5590 0,4589 0,8208
, —0,318 0,7797 0,6402 0,821
1 0 0 1,2226 1,0044 1 0,8215
0,159 1,6651 1,3682 0,8217
+0,318 2,5449 2,0016 0,8219
0,5 5 —0,525 0,2047 0,7070 0,6929 3,4539
—0,2625 0,3089 0,8193 0,8071 92,6524
0 0,6042 1,0034 1 1,6607
+0,2625 8,9808 3,4257 3,7353 0,3815
1 —1,05 0,1975 0,4880 2,4712
—0,525 0,3126 0,6520 2,0855
0 0,6042 1,0034 1 1,6607
| 40,2625 | 1,0000 1,4317 1,4317
[ +0,525 2,3734 2,8256 1,1905
|05 —1,05 0,2234 0,4657 2,0847
! —0,525 0,3398 0,6381 1,8779
| 0 0,5042 1,0034 1 1,6607
| 40,2625 | 0,905 1,4095 1,580
; 40,525 1,6745 2,3988 1,4325
0,05 ~16,8 0,0054 0,0125 2,3093
—10,5 0,0151 0,0314 2,0748
—5,25 0,0494 0.0925 1,8706
—1,05 0,2567 0,4372 1,7029
0 0,6042 1,0034 1 1,6607
40,525 1,3378 2.1936 1,6396
0 ~10,5 0,0164 0,0270 0,0251 1,6433
—5,95 0,0521 0,0861 0,0832 1,6505
—1,05 0,2613 0,4332 0,4295 1,6583
—0,525 0,3741 0,6208 06170 1,6595
0 0,6042 1,0034 i 1,6607
40,2625 0,8375 1,3914 1,3887 1,6614
+0,525 1,3093 21762 2,1753 1,6620

Since these guantities (the normal derivative 8T/8y and the function T itself) do not depend smoothly on x,
to increase the accuracy we must use quadratic formulas, accurate asymptotically for these quantities.
With the same degree of accuracy as the mesh equations approximate the differential equations, it is suf-

ficient to use the quadratic formulas of trapezoid type. To find the average temperature we must formulate
the integral sums
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such that the functions u, continuous in each of the segments ihg, (i + 1)hg are linear combinations of the
main terms asymptotically, i.e., are combinations of the type m + m;x2/3. As a result we obtain:

1208

TABLE 2. Values of Coefficients and Roots of the Polynomials P,
and P, and Residues in the Representation 1/a(f) = E‘(Ai /(8 ~By)

n (,{F} i 5 4 l B l @ l A, ‘ A,
K =1; Ky=1
31—0,636 |0 |+1 +1,2178 l
—0,318 |1|—0,9788 |—0.5411  |-11,567 43,997 | —1,601
0 2 [40,2259  |4-0,05886 |--3.384 -+5,267 | --0,2037
+0,159 | 3 |—0.0076 424,88 —6.,374
+0.318
40,4452
2 1—0,318 |0 |+1 +1,2173
0 1|—0,1667  |+0,4408  |+1,563 —2,105 | —1,570 |40,2159
40,159 | 2|-—-0,3027  |—0,06534 |—2.114 +8.851 | —0,0057
+0.318
10,4452
0 0 1+1 +1,2173
40,159 | 1|—0,6525¢ |—0,15065 |4-1,5616 | +8,0802 | —1,5633
40,318 | 2 |4-0,007797 +8%,129 —17,759
10,4452
{140,150 | 0 |+1 +1,217327 +0,21043
40,318 | 1 |—0,639029 |—0.134472 |+1,5649 +9,0527 | —1,5757
40,4452
1 40,318 | 0 |41 +1,2064561
+0,4452 | 1 |—0,5709971 +1,7513 —2,1129
Ki=5; Ka=0,5
2 [—0,525 |0 |+1 +0,6021493
—0,2625 | 1 |—3,1127689 |—0,3349830 [+0,32790 | --1,7976 | —0,16484
0 2 |+0,1922853 +15,860 —1.,5773
+0,2625
1 |—0,2625 |-0/+1 +0,6021493 40, 00540
0 1 |—3,0453373 |—0,2905297 [+0,32837 | 42,0726 | —0,16640
+0,2625
1|40 0 |+1 +0,6021493
40,2625 | 1 |—2,9345148 +0,34077 —0,20520
Ki=5; Ky=5
210,153 | 0 [+1 +6,1682 +1,0281
—0,0765 | 1 |—6,8663  |—25,3879 [--0,2787  |4-0,2797 |—0,46103
0 2 [+11,5091 |-+11,9250 [40.3333  [<1,8403 |—1.1192
-+0,03825
+0.0765
2 |—0,0765 | 0 |+1 +6,1682
0 1/—3,7210 [—5,9898  [4+0,2018  [4-1,0208 |—I,4107
+0,03825( 2 |-+-1,0067 43,4043 —4.5390
40,0765
1i 0 014 -+6,168179 ' +1,15157
440,03825 1 |—3,378876 |—3.891010 |4-0,205056 |--1,585238|—I,484698
+0,765
1 |+0,08825 0 |+1 +6,134674
40,0765 | 1 |—2,942717 +0,339822 —2,084608
K{=0,5; Ky=5
2 {—0,0765 | 0 |1 +6,168
0 1|—12,945 |—78,163  |40,07892  |+0,078914|-+0,00004
+0,03825 2 (43,465 +3.657 —22,
40,0765
1| o 0 |-+1 | +6,1682 +1,8309
40,0825/ 1 |—0,3873  |—0,7091  |42,5820  |+8,6987 |—11,1990
40,0765
1 |+0,03825 0 [+1 +6,167606
40,0765 | 1 |—0,275940 +3,623982 —22,35129
dfh

k1
X N

i==0
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Ny = a, N; =B a; + B (Ezl),
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i s TENTEEE

_(1_%) for i=0,1, .., 4, (92)

?

To calculate the mean flux we must use the quantity du(f)/ ag_li’o, since it is finite and is obtained by numeri-
cal solution as

Kih2m?
o =i s
wuh | L [( 1 — __;_) uf) — u§f’_1J, Wy =uls). (102)

Then

y=0

s) F — -
oI gl Loy
dy =0 Kz dt

and the integral sum is

dih—

s (sYrp ! 1
1 EMz’ ou'” | , (10)
K, 4 0F o

=0

where the same asymptote with weight x~1/3 is valid for auf)/ 8_.{. This case is distinct from computation
of the mean value of temperature only as regards the weight. The formulas are analogous for

My =Yo, M5, =08~ . M, — =9, + 8,1, 10b
Q Yo d/h? dj—l ,0<f<;tT_—_ Yz+ 1-1 ( )
s s
where
V=8, = g+ DA =i for i=0, 1, .., 4,
4 s
2/3 2/3 i
_ 8= M for i=5, 6 d _
'Yl 2i1/3 ] i1 2(L+1)1/3 =y y svay h;— .

The results of computer calculations for different values of K|, K;, 8 are shown in Table 1.

Calculation of the ratio between the averages was performed in some cases as an indirect check of
the accuracy.

In averaging all the quantities with respect to x, for the mean values of temperature inside the body

we have the equation
0¥ T
oy’

+pTO =0, 0<y<-L

with the condition

aT®
— - r =1
dy =7
and the value calculated on the computer
Ty = T
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As the result of solution we have

aT®
dy

ﬁ;r—ﬂ9V~ﬁﬁhﬁW~E)+aﬁyfj?yr§<0

11
aT® (D

dy

|- =TRVE el § )+ PtTa—in (II/F—) ,

which is compared with the value p,, calculated on the computer.

During the calculation values of local boundary temperatures were put out by the computer: they were
mainly such that the asymptotic behavior for x — 0 was described quite accurately by the asymptote deter-
mined in [2], which also showed that the scheme is applicable for actual computations.

The results showed that convergence is realized for all values of the parameters for which the opera-
tor Ly has a nonnegative symmetrical part. Here the rate of convergence is not appreciably less than the
rate of approach to steady conditions of the corresponding nonsteady problemwith equivalence of 7 ~Z 7 ko
since the elements 7; . were mainly of order unity. To obtain a solution of the problem for values of the
parameters other than in this region, even when the solution exists and also for values close to critical,
when convergence is severely decelerated, we can recommend a combination of the above scheme with
moment methods, which make it possible to eliminate the main error components which increase or very
slowly decrease when using the iteration scheme of Eq. (5).

One question arising indescribing nonsteady phenomena in problems similar to that examined is the
guestion of the possible use of average values. The equation inside the body in the problem considered as-
sumed the average to be

7O 7, ’é)»%— 51 T (3, ) di=TO (5)
0

1 j‘ oT® (x, y) 45— 0T (4)

q dy dy
0 . :

and the nonsteady equation has the form

T T
= +Q(y, B.
7 Q.

Regarding the boundary conditions at the solid —liquid boundary, here the average does not give an exact
correspondence only between the average values. The average flux involves also other characteristics of
the distribution of surface temperature, due to the presence of a term with a first derivative with respect
to X in the heat-transfer equation in the liquid. For y = R/d we shall assume an exact derivation of the
average values.

_ It is interesting to consider the question of approximating to the boundary condition for the solid with
y = 0. By assigning a suitable initial temperature distribution at t = 0, we can obtain very arbitrary heat-
transfer relations between the average quantities and, without isolating any class of processes, cannot deal
with average quantities without resorting to solution of the complete equations.

As the class of required solutions we shall choose those which are sufficiently smooth in time, when
we can consider that, as functions of time, all the quantities considered are approximated by finite linear
combinations of exponential and polynomial functions. Here we try to investigate the application of the
technique of {9], and shall study smgular1t1es of approximation to the boundary relation by means of dif-
ferential relations of the type P;(8/ 8t)T P,(0/0t)p with equal degrees of polynomials P; and P;, or when
the degree of P, is one larger than necessary to have a starting point for further investigation.

We shall first consider certain peculiarities of the qualitative behavior of the exact boundary rela-
tion. The question arises of the uniqueness of describing the process with fixed B, i.e., of the dependence
of the effective heat-transfer coefficient on R /d, alg/q- q (x) [2]. This relation exists, but, when R/d —
and fq x)dx = 0 it ceases to be single-valued for 8 < 0. But if B > 0, then the deviation of q(x) from constancy
can have an appreciable influence, since, for sufficiently large 8, solving the problem inside the body, com-
ponents of the solution of type coskmx, oscillatory with respect to x, are not damped, and for Ja®)dx = 0
they are very appreciable. The question of the accuracy of estimating these must be examined specially.
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We shall discuss the case of K{E ——o , It is not difficult to check that

'l'/"—— K{*E

12
K, (12)

a (@)~

The effect of K, on oz(E) is quite evident and consists of a reduction of o with increase of K,.

The case of large negative values of KfE was used as a basic approximation in [1], where attention
was focused on the qualitative picture of the process and on convective transfer. This limiting case is
typical in that the approximation by differential relations gives the same behavior as the approximating
rational functions with respect to 8, as is obtained when the convective component is ignored. Even for
mean values of KI' an increase of @ and of -8is observed, but, for very small Ki’, @ decreases with—p3,due
to the fact that the steady equations are in fact considered in the liquid, so that @ increases in transition to
boundary values of temperature which increase faster with respect to x, and an increase in —f§ leads totheir
becoming equal.

To make a complete investigation of the spectral properties of the boundary relation we must know
the dependence of o (B) also for imaginary B, but we confine ourselves only to rational approximations to
(/3) constructed using calculated values for certain real 8.

For the approximation

o DA

L_ 2@ T 5 VA (13)
*®  A®  Zop 55

Table 2 shows values of the coefficients of polynomials P, and P,, their zeros and residues when 1/ a(B) is repre-
sented as the sum of simple fractions. Although these constructions require high accuracy in the original
data, and the accuracy is insufficient for hg ~ 0 1d nevertheless, to explain the behavior of the approxima-
tions, we used the results of the calculat1ons since they correspond, in fact, to a similar lattice problem,

€., to a model for which a mesh scheme is an accurate description. The problem enters as a degenerate
case into the class of elliptical and parabolic mixed~composition problems considered, for which approxi-
mations of actual quantities are constructed using differential relations.

In the graph of {E} (Table 2) we indicate the set Efor which values of o from Table 1 coincide with
those calculated by the approximate formula. While the approximation of 1/a(g) is constructed from (2n + 1)
points, the degrees of the polynomials P; and P; are the same, equal to n; in the case of 2n points the degree
of P is n and that of P, is (n —1).

It is important to note in Table 2 that, in contrast with the ecases given in [9], the residues can have
different signs, and that the zeros of the numerator and denominator need not alternate. In these cases
Ki=1,K;=1,n=2and K{ = 0.5, K, = 5, n = 2 degeneracy is, in fact, observed, since the small residues
Ay = —0.0057 and 0.00004 can be replaced by zeros in the limits of accuracy of solution of the problem (even
in the mesh). Inthe case K{=5, Ky =5, n = 2 we observe the phenomenon of transition of two close roots
of the denominator and of one root of the numerator adjacent to them in the expansion

1 _ Zdf
a(p) S

into one root of the denominator upon interpolation with respect to 5 and 4 points, respectively, in terms
of 8. In these variants, where a(B) varies only slightly, rational approximations do not give well-posed
problems, and in addition, systems for coefficients of the polynomials PI(E) and PQ(E) become so badly con-
ditioned that they do not allow us to determine even a smooth root of P, ().

As far as physical use of the zeros and poles of 1/01(E) is concerned, only the first pole and residue
describe the actual process with sufficient accuracy (such as the rate of cooling of a surface, when a liquid
cannot give up the heat obtained in the previous time interval, and, in fact, no heat transfer is obtained).
The remaining poles and residues here, besides the fact that they are not sufficiently accurate to describe
the real process in the degree of approximation considered, refer to cases with variable-sign boundary
temperatures and must depend strongly on details of the behavior of the equations inside the solid.

1211



Tay» Pay> @
Pe

= agt/d? o)
cia d17 B]'fl): Blz
Ay, Ay

G U W o

NOTATION

are the corrections to temperatures in the body and in the liquid, respectively;

= (ui—i,j — Zui,j + ui+1,j)/h%‘; (ui)yz = (ui,j g~ 2u; , + ui,j+1)/hé_; (Ui)zg_j= (Ui ,j+1

—Uj 3 _1)/2h§_; (ui)237j = (ui,j +1 7Y _1/2hg;

-9 A
X 1.}

are the values of the mean temperature, dimensionless flux, and heat-transfer coefficient
at the solid —liquid boundary, as obtained from the computer;

is the value of the control stream;

is the dimensionless time;

are the values of the coefficients and roots of the polynomials P; and P,, respectively;

are the integral part and the residues in representing 1/a (B) in the form of simple frac-
tions.
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